培训计算机视觉模型通常需要在各种场景配置和属性集中收集和标记大量图像。这个过程非常耗时,并且要确保捕获的数据分布映射到应用程序方案的目标域,这是一项挑战。最近,综合数据已成为解决这两个问题的一种方式。但是,现有方法要么要求人类专家手动调整每个场景属性,要么使用几乎无法控制的自动方法;这需要渲染大量的随机数据变化,这很慢,对于目标域通常是次优的。我们介绍了第一个完全可区分的合成数据管道,该数据管道使用具有目标应用程序损耗函数的闭环中的神经辐射场(NERF)。我们的方法可以在没有人工的情况下生成数据,以最大程度地提高目标任务的准确性。我们说明了我们方法对合成和现实对象检测任务的有效性。我们还引入了一个新的“ YCB野外”数据集和基准标准,该数据集和基准为对象检测提供了一种在现实世界环境中具有多种姿势的测试方案。
translated by 谷歌翻译
弱监督的对象检测(WSOD)使对象检测器能够使用图像级类标签训练对象检测器。但是,当前WSOD模型的实际应用是有限的,因为它们在小规模上运行,需要进行广泛的培训和精致。我们提出了弱监督的检测变压器,该变压器可以有效地从大规模预处理数据集到数百个新物体的WSOD列表有效地转移。我们利用预处理的知识来改善WSOD中使用的多个实例学习框架,并且实验表明我们的方法的表现优于数据集上的最新方法,其新颖类是本文的两倍。
translated by 谷歌翻译
视觉注意力有助于在人类视野中的噪音,腐败和分布变化下实现强大的感知,这是现代神经网络仍然缺乏的领域。我们介绍了Vars,来自复发性稀疏重建的视觉注意力,这是一种基于人类视觉注意机制的两个突出特征的新注意力公式:复发性和稀疏性。相关特征通过神经元之间的复发连接组合在一起,而显着物体通过稀疏正则化出现。 VARS采用带有复发连接的吸引子网络,随着时间的流逝,它会收敛到稳定的模式。网络层表示为普通微分方程(ODES),将注意力作为一个经常性吸引子网络表示,该网络等效地使用编码基本数据模式的“模板”字典优化输入的稀疏重建。我们表明,自我注意力是具有单步优化的VAR的特殊情况,没有稀疏性约束。 VAR可以很容易地用作替代流行视觉变形金刚的自我注意力,从而不断提高其在各种基准测试中的稳健性。代码在GitHub(https://github.com/bfshi/vars)上发布。
translated by 谷歌翻译
对比度学习依赖于假设正对包含相关视图,例如,视频的图像或视频的共同发生的多峰信号,其共享关于实例的某些基础信息。但如果违反了这个假设怎么办?该文献表明,对比学学习在存在嘈杂的视图中产生次优表示,例如,没有明显共享信息的假正对。在这项工作中,我们提出了一种新的对比损失函数,这是对嘈杂的观点的强大。我们通过显示嘈杂二进制分类的强大对称损失的连接提供严格的理论理由,并通过基于Wassersein距离测量来建立新的对比界限进行新的对比。拟议的损失是完全的方式无话无双,并且对Innoconce损失的更换简单的替代品,这使得适用于现有的对比框架。我们表明,我们的方法提供了在展示各种现实世界噪声模式的图像,视频和图形对比学习基准上的一致性改进。
translated by 谷歌翻译
The United States coastline spans 95,471 miles; a distance that cannot be effectively patrolled or secured by manual human effort alone. Unmanned Aerial Vehicles (UAVs) equipped with infrared cameras and deep-learning based algorithms represent a more efficient alternative for identifying and segmenting objects of interest - namely, ships. However, standard approaches to training these algorithms require large-scale datasets of densely labeled infrared maritime images. Such datasets are not publicly available and manually annotating every pixel in a large-scale dataset would have an extreme labor cost. In this work we demonstrate that, in the context of segmenting ships in infrared imagery, weakly-supervising an algorithm with sparsely labeled data can drastically reduce data labeling costs with minimal impact on system performance. We apply weakly-supervised learning to an unlabeled dataset of 7055 infrared images sourced from the Naval Air Warfare Center Aircraft Division (NAWCAD). We find that by sparsely labeling only 32 points per image, weakly-supervised segmentation models can still effectively detect and segment ships, with a Jaccard score of up to 0.756.
translated by 谷歌翻译
The paper presents a cross-domain review analysis on four popular review datasets: Amazon, Yelp, Steam, IMDb. The analysis is performed using Hadoop and Spark, which allows for efficient and scalable processing of large datasets. By examining close to 12 million reviews from these four online forums, we hope to uncover interesting trends in sales and customer sentiment over the years. Our analysis will include a study of the number of reviews and their distribution over time, as well as an examination of the relationship between various review attributes such as upvotes, creation time, rating, and sentiment. By comparing the reviews across different domains, we hope to gain insight into the factors that drive customer satisfaction and engagement in different product categories.
translated by 谷歌翻译
Visual language such as charts and plots is ubiquitous in the human world. Comprehending plots and charts requires strong reasoning skills. Prior state-of-the-art (SOTA) models require at least tens of thousands of training examples and their reasoning capabilities are still much limited, especially on complex human-written queries. This paper presents the first one-shot solution to visual language reasoning. We decompose the challenge of visual language reasoning into two steps: (1) plot-to-text translation, and (2) reasoning over the translated text. The key in this method is a modality conversion module, named as DePlot, which translates the image of a plot or chart to a linearized table. The output of DePlot can then be directly used to prompt a pretrained large language model (LLM), exploiting the few-shot reasoning capabilities of LLMs. To obtain DePlot, we standardize the plot-to-table task by establishing unified task formats and metrics, and train DePlot end-to-end on this task. DePlot can then be used off-the-shelf together with LLMs in a plug-and-play fashion. Compared with a SOTA model finetuned on more than >28k data points, DePlot+LLM with just one-shot prompting achieves a 24.0% improvement over finetuned SOTA on human-written queries from the task of chart QA.
translated by 谷歌翻译
Automated offensive language detection is essential in combating the spread of hate speech, particularly in social media. This paper describes our work on Offensive Language Identification in low resource Indic language Marathi. The problem is formulated as a text classification task to identify a tweet as offensive or non-offensive. We evaluate different mono-lingual and multi-lingual BERT models on this classification task, focusing on BERT models pre-trained with social media datasets. We compare the performance of MuRIL, MahaTweetBERT, MahaTweetBERT-Hateful, and MahaBERT on the HASOC 2022 test set. We also explore external data augmentation from other existing Marathi hate speech corpus HASOC 2021 and L3Cube-MahaHate. The MahaTweetBERT, a BERT model, pre-trained on Marathi tweets when fine-tuned on the combined dataset (HASOC 2021 + HASOC 2022 + MahaHate), outperforms all models with an F1 score of 98.43 on the HASOC 2022 test set. With this, we also provide a new state-of-the-art result on HASOC 2022 / MOLD v2 test set.
translated by 谷歌翻译
Free-text rationales (FTRs) follow how humans communicate by explaining reasoning processes via natural language. A number of recent works have studied how to improve language model (LM) generalization by using FTRs to teach LMs the correct reasoning processes behind correct task outputs. These prior works aim to learn from FTRs by appending them to the LM input or target output, but this may introduce an input distribution shift or conflict with the task objective, respectively. We propose KNIFE, which distills FTR knowledge from an FTR-augmented teacher LM (takes both task input and FTR) to a student LM (takes only task input), which is used for inference. Crucially, the teacher LM's forward computation has a bottleneck stage in which all of its FTR states are masked out, which pushes knowledge from the FTR states into the task input/output states. Then, FTR knowledge is distilled to the student LM by training its task input/output states to align with the teacher LM's. On two question answering datasets, we show that KNIFE significantly outperforms existing FTR learning methods, in both fully-supervised and low-resource settings.
translated by 谷歌翻译
Visual language data such as plots, charts, and infographics are ubiquitous in the human world. However, state-of-the-art vision-language models do not perform well on these data. We propose MatCha (Math reasoning and Chart derendering pretraining) to enhance visual language models' capabilities in jointly modeling charts/plots and language data. Specifically, we propose several pretraining tasks that cover plot deconstruction and numerical reasoning which are the key capabilities in visual language modeling. We perform the MatCha pretraining starting from Pix2Struct, a recently proposed image-to-text visual language model. On standard benchmarks such as PlotQA and ChartQA, the MatCha model outperforms state-of-the-art methods by as much as nearly 20%. We also examine how well MatCha pretraining transfers to domains such as screenshots, textbook diagrams, and document figures and observe overall improvement, verifying the usefulness of MatCha pretraining on broader visual language tasks.
translated by 谷歌翻译